skip to main content


Search for: All records

Creators/Authors contains: "Yu, Edward T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An extremely rapid process for self‐assembling well‐ordered, nano, and microparticle monolayers via a novel aerosolized method is presented. The novel technique can reach monolayer self‐assembly rates as high as 268 cm2min−1from a single aerosolizing source and methods to reach faster monolayer self‐assembly rates are outlined. A new physical mechanism describing the self‐assembly process is presented and new insights enabling high‐efficiency nanoparticle monolayer self‐assembly are developed. In addition, well‐ordered monolayer arrays from particles of various sizes, surface functionality, and materials are fabricated. This new technique enables a 93× increase in monolayer self‐assembly rates compared to the current state of the art and has the potential to provide an extremely low‐cost option for submicron nanomanufacturing.

     
    more » « less
  2. Abstract Fabrication of micro- and nanoscale electronic components has become increasingly demanding due to device and interconnect scaling combined with advanced packaging and assembly for electronic, aerospace, and medical applications. Recent advances in additive manufacturing have made it possible to fabricate microscale, 3D interconnect structures but heat transfer during the fabrication process is one of the most important phenomena influencing the reliable manufacturing of these interconnect structures. In this study, optical absorption and scattering by three-dimensional (3D) nanoparticle packings are investigated to gain insight into micro/nano heat transport within the nanoparticles. Because drying of colloidal solutions creates different configurations of nanoparticles, the plasmonic coupling in three different copper nanoparticle packing configurations was investigated: simple cubic (SC), face-centered cubic (FCC), and hexagonal close packing (HCP). Single-scatter albedo (ω) was analyzed as a function of nanoparticle size, packing density, and configuration to assess effect for thermo-optical properties and plasmonic coupling of the Cu nanoparticles within the nanoparticle packings. This analysis provides insight into plasmonically enhanced absorption in copper nanoparticle particles and its consequences for laser heating of nanoparticle assemblies. 
    more » « less
  3. Abstract

    Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2is maintained at 1.3 V versus RHE for 7 days.

     
    more » « less
  4. Abstract

    Smart windows are energy‐efficient windows whose optical transparency can be switched between highly transparent and opaque states in response to incident solar illumination. Transparent and conductive metal nanomesh (NM) films are promising candidates for thermochromic smart windows due to their excellent thermal conductivity, high optical transparency at near infrared wavelengths, and outstanding stability. In this study, ZnO/Au/Al2O3NM films with periodicities of 200 and 370 nm are reported. The ZnO/Au/Al2O3NM film with a 370 nm periodicity exhibits a transmittance over 90% at 550 nm and sheet resistance lower than 20 Ω sq−1. Based on a standard figure of merit, this structure outperforms current state‐of‐the‐art NM films. Here, the integration of ZnO/Au/Al2O3NM films into a thermochromic perovskite smart window is also demonstrated. The transparency of the smart window structure is manipulated by transient resistive heating to trigger the thermochromic transition to the opaque state, which can be then maintained solely by 1‐sun, AM 1.5 G illumination. This climate‐adaptive, low power‐activated, and fast‐switching smart window structure opens new pathways toward its practical application in the real world.

     
    more » « less
  5. Abstract Nanoparticle heating due to laser irradiation is of great interest in electronic, aerospace, and biomedical applications. This paper presents a coupled electromagnetic-heat transfer model to predict the temperature distribution of multilayer copper nanoparticle packings on a glass substrate. It is shown that heat transfer within the nanoparticle packing is dominated by the interfacial thermal conductance between particles when the interfacial thermal conductance constant, GIC, is greater than 20 MW/m2K, but that for lower GIC values, thermal conduction through the air around the nanoparticles can also play a role in the overall heat transfer within the nanoparticle system. The coupled model is used to simulate heat transfer in a copper nanoparticle packing used in a typical microscale selective laser sintering (μ-SLS) process with an experimentally measured particle size distribution and layer thickness. The simulations predict that the nanoparticles will reach a temperature of 730 ± 3 K for a laser irradiation of 2.6 kW/cm2 and 1304 ± 23 K for a laser irradiation of 6 kW/cm2. These results are in good agreement with the experimentally observed laser-induced sintering and melting thresholds for copper nanoparticle packing on glass substrates. 
    more » « less